
2-1

Reinforcement Learning

Lecture 2

Lecturer: Haim Permuter Scribe: Ziv Aharoni

Throughout this lecture we talk about policy evaluation and policy improvements in

finite MDPs. We focus on problems where the environment is known to the agent and

fully observed. First, we show how a policy can be evaluated1 by solving the Bellman

equation. Last we will show how to greedily improve the policy towards finding the

optimal policy of the MDP.

I. POLICY EVALUATION

In the last lecture we introduced the state-value function as given by

vπ(s) = Eπ

[
∞∑
k=0

γkRt+k+1

∣∣∣∣∣ St = s

]
, ∀s ∈ S, γ ∈ (0, 1). (1)

By using the Markov property of the MDP we can derive the Bellman equation for vπ

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s]

=
∑
a∈A(s)

π(a|s)

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)vπ(s′)

]
, ∀s ∈ S, γ ∈ (0, 1) (2)

where

r(s, a) ,
∑
r∈R

p(r | s, a)r (3)

The Bellman equation satisfies a recursive relationship of vπ, that could be exploited to

find vπ. Note that the Bellman equation (2) is a system of linear equations, and, hence,

could be solved simply with tools from linear algebra. An explicit formulation is available

1evaluating a policy means finding its corresponding state-value function vπ(s)

2-2

in the appendix. Now, we show how to solve the Bellman equation by an iterative process.

Let us define the state-value vector by

vπ =

vπ(s1)

vπ(s2)
...

vπ(s|S|)

 , (4)

and, the operator Tπ by

Tπ(v)(s) =
∑
a∈A(s)

π(a|s)

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)v(s′)

]
, ∀s ∈ S (5)

Note that Tπ is defined based on the Bellman equation for vπ. Now, for an arbitrarily

v0 ∈ R|S| we define the sequence {vk}∞k=0 by

vk(s) = Tπ(vk−1)(s)

= Tπ(Tπ(vk−2))(s)

= Tπ(Tπ(. . . Tπ(v0)(s) . . .))

= T kπ (v0)(s), ∀s ∈ S (6)

We want to show that the operator Tπ satisfies the property,

lim
k→∞

T kπ (v0)(s) = vπ(s), ∀v0 ∈ RS , s ∈ S, (7)

this will assure that the iterative process will converge to vπ. Let us survey some properties

of the operator Tπ.

Theorem 1 (Properties of Tπ) The operator Tπ satisfies the following properties:

∀v,v′ ∈ R|S|, s ∈ S,

1. monotonicity v(s) ≤ v′(s)⇒ Tπ(v)(s) ≤ Tπ(v
′)(s)

2. additivity ∀d ∈ R : ṽ(s) = v(s) + d⇒ Tπ(ṽ)(s) = Tπ(v)(s) + γd

3. γ-contraction ∀v,v′ ∈ R|S| ‖Tπ(v)− Tπ(v′)‖∞≤ γ‖v − v′‖∞

Proof Let us prove the properties:

2-3

monotonicity: First, note that by the assumptions (v(s)− v(s)) ≥ 0 holds. Now, let us

consider the difference Tπ(v)(s)− Tπ(v)(s).

Tπ(v)(s)− Tπ(v)(s) =
∑
a∈A(s)

π(a|s)

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)v(s′)

]
−

−
∑
a∈A(s)

π(a|s)

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)v′(s′)

]

=
∑
a∈A(s)

∑
s′∈S

γπ(a|s)p(s′ | s, a) [v(s′)− v′(s′)]
(a)

≥ 0

where (a) follow from that γπ(a|s)p(s′ | s, a) ≥ 0, and, hence Tπ(v′)(s) ≥ Tπ(v)(s).

additivity: Let us compute Tπ(ṽ)(s) directly.

Tπ(ṽ)(s) =
∑
a∈A(s)

π(a|s)

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)(v(s′) + d)

]

=
∑
a∈A(s)

π(a|s)

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)(v(s′))

]
+

+
∑
a∈A(s)

∑
s′∈S

γπ(a|s)p(s′ | s, a)d

(a)
= Tπ(v)(s) + γd

where (a) follows from that
∑

a∈A(s)
∑

s′∈S π(a|s)p(s′ | s, a) = 1.

γ-contraction: Let us check the property directly.

|Tπ(v)(s)− Tπ(v′)(s)| =

∣∣∣∣∣∣
∑
a∈A(s)

∑
s′∈S

γπ(a|s)p(s′ | s, a) [v(s′)− v′(s′)]

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
a∈A(s)

∑
s′∈S

γπ(a|s)p(s′ | s, a)max
s∈S
|v(s′)− v′(s′)|

∣∣∣∣∣∣
= γmax

s∈S
|v(s′)− v′(s′)|

= γ‖v′ − v‖∞

�

2-4

This is true ∀s ∈ S, therefore also for maxs∈S |Tπ(v)(s)− Tπ(v)(s)|, which proves the

property.

Now, we use the properties to prove two Lemmas that will aid us in proving (7).

Lemma 1 For all n ∈ N, v0 ∈ R|S| and a sequence {vk}∞k=0 defined by the the rule

vk = Tπ(vk−1) ∀k ≥ 1, the following

‖vn+1 − vn‖∞≤ γn‖v1 − v0‖∞ (8)

holds.

Proof Let us use the γ-contraction property of Tπ to prove the statement in induction.

The induction base for n = 1,

‖v1+1 − v1‖∞= ‖Tπ(v1)− Tπ(v0)‖∞
(a)

≤ γ‖v1 − v0‖∞

where (a) follows from the γ-contraction property of Tπ. We assume the correctness for

n = k. We check for n = k + 1

‖v(k+1)+1 − vk+1‖∞ = ‖Tπ(vk+1)− Tπ(vk)‖∞
(a)

≤ γ‖vk+1 − vk‖∞
(b)

≤ γk+1‖v1 − v0‖∞

where (a) follows the γ-contraction property, and, (b) follows the induction’s assumption.

Hence, we proved in induction the Lemma.

Lemma 2 The sequence {vk}∞k=0 is a Cauchy sequence.

Proof For m,n ∈ N such that m > n

‖vm − vn‖∞
(a)

≤ ‖vm − vm−1‖∞+‖vm−1 − vm−2‖∞+ · · ·+ ‖vn+1 − vn‖∞
(b)

≤ γm−1‖v1 − v0‖∞+γm−2‖v1 − v0‖∞+ · · ·+ γn‖v1 − v0‖∞

= γn‖v1 − v0‖∞
m−n−1∑
l=0

γl

2-5

≤ γn‖v1 − v0‖∞
∞∑
l=0

γl

=
γn

1− γ
‖v1 − v0‖∞

n→∞−−−→ 0

where (a) follows the triangle inequality, and, (b) follows Lemma 1. Hence, {vk}∞k=0 is

a Cauchy sequence, and therefore converges to v∗.

Theorem 2 For Tπ be defined in (5), for all v0 ∈ R|S|, the following holds:

lim
k→∞

T kπ (v0) = vπ, ∀v0 ∈ S (9)

Proof Note that vπ satisfies Tπ(vπ) = vπ by the Bellman equation, therefore,

limk→∞ T
k
π (vπ) = vπ holds. Now, let us assume that there exist v∗ ∈ R|S|, v∗ 6= vπ,

such that limk→∞ T
k
π (v0) = v∗. Let us choose v0 = vπ.

v∗ = lim
k→∞

T kπ (v0) = lim
k→∞

T kπ (vπ) = vπ,

in contradiction to the assumption. This proves the theorem. �

Algorithm 1 Iterative Policy Evaluation
input: policy π(·|s), tolerance ε

output: estimated value function v̂π(s)

initiate v0 = 0 ∈ R|S|, k ← 0

repeat

for s ∈ S do

vk+1(s) = Tπ(vk)(s)

δ = ‖vk+1 − vk‖∞
k ← k + 1

until δ < ε

return vk

After we showed that vπ could be evaluated by an iterative procedure, let us specify the

algorithm for finding vπ iteratively, namely, iterative policy evaluation. The algorithm is

depicted in Algorithm 1.

2-6

II. POLICY IMPROVEMENT

Now, after evaluating a given policy π, we would like to make an improvement in the

current policy in the sense of improving the expected return, i.e improving vπ(s). Hence,

let us define partial ordering over policies and the optimal policy.

Definition 1 Let π, π′ be two policies. we say that

π � π′ if vπ(s) ≤ vπ′(s) ∀s ∈ S

Definition 2 The Bellman optimality equation is given by

v∗(s) = max
a∈A(s)

{
r(s, a) + γ

∑
s′

p(s′|s, a)[vπ(s′)]

}
(10)

This condition is equivalent for finding a policy π∗ such that ∀π, s ∈ S, vπ∗(s) ≥ vπ(s).

Based on Definition 1, we seek to change a policy π to obtain a better policy π′. By the

Bellman equation we can express vπ(s) by

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s]

= Eπ [Eπ [Rt+1 + γvπ(St+1) | St = s, At] | St = s]

=
∑
a

π(a|s)qπ(s, a)

≤
∑
a

π(a|s) max
a∈A(s)

qπ(s, a)

= max
a∈A(s)

qπ(s, a) (11)

The term qπ(s, a) represents the expected return of being in state s and choosing action

a and thereafter following policy π. From (11) we can conclude that we can act greedily

to improve π to a deterministic policy π′ that is given by

π′(·|s) =

1 , if a = argmaxa∈A(s) qπ(s, a)

0 , else
∀s ∈ S. (12)

Hence, we can derive that

vπ(s) ≤ max
a∈A(s)

qπ(s, a) = qπ(s, π
′(s)) (13)

2-7

Let us show that π � π′.

vπ(s) = Eπ [Rt+1 + γvπ(St+1) | St = s]

≤ Eπ′ [Rt+1 + γqπ(St+1, π
′(St+1)) | St = s]

= Eπ′ [Rt+1 + γEπ′ [Rt+2 + γvπ(St+2) | St+1] | St = s]

= Eπ′ [Rt+1 + γEπ′ [Rt+2 + γvπ(St+2) | St+1, St = s] | St = s]

= Eπ′
[
Rt+1 + γRt+2 + γ2vπ(St+2) | St = s

]
≤ Eπ′

[
Rt+1 + γRt+2 + γ2Rt+3 + γ3vπ(St+2) | St = s

]
...

≤ Eπ′
[
Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+3 + . . . | St = s

]
= vπ′(s) (14)

We showed that given a policy π we can act greedily to get π′ which is better or equal

to π. If after the improvement of π, vπ(s) = vπ′(s) ∀s ∈ S we get that

vπ(s) = vπ′(s) = max
a∈A(s)

{∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)]

}
, (15)

which constitute the Bellman optimality equation (2), i.e π = π∗. The policy improvement

algorithm is depicted in Algorithm 2.

Algorithm 2 Policy Improvement
input: value function vπ(s)

output: new deterministic policy π′(s)

for s ∈ S do

π′(s) = argmaxa∈A(s)

{∑
s′,r p(s

′, r|s, a)[r + γvπ(s
′)]
}

return π′(s)

III. POLICY ITERATION

In the previous sections we showed how we can improve a given policy π by 1) evaluate

it by using policy evaluation, and, 2) improve it greedily by using policy improvement

2-8

to get a better policy π′. we can repeat this process sequentially to get a monotonically

non-decreasing policies that will converge to a optimal policy π∗ with the corresponding

v∗. This process could be depicted by the following diagram:

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ . . .
I−→ π∗

E−→ vπ∗ (16)

Here we start with a random policy π0, use policy evaluation (E−→) to evaluate vπ0 and

then use policy improvement (I−→) to find π1. This process continues repeatedly until v(·)

stops improving, i.e v(·) meets the Bellman optimallity condition. The policy iteration

algorithm is depicted in Algorithm 3.

Algorithm 3 Policy Iteration
input: Environment p(r | s, a), p(s′ | s, a)

output: π∗, v∗

initiate π0(s) ∈ A(s) ∀s ∈ S

k ← 0.

ε tolerance parameter.

vπ0 = policy evaluation(π0) (Algorithm 1)

repeat

πk+1 = policy improvement(vπk) (Algorithm 2)

vπk+1
= policy evaluation(πk+1) (Algorithm 1)

k ← k + 1

δ = ‖vπk+1
− vπk‖∞

until δ < ε

return vπk+1
≈ v∗, πk+1 ≈ π∗

Example 1 (Gridworld) Let us consider the grid as depicted in Figure 1. Let us define

the environment of the MDP. The problem has two terminal states (gray squares), i.e two

states from which the probability to move to other state is 0. The state space is defined by

S = {0, 1, 2, . . . , 14, 15}. The reward signal equals to -1 and is uniform over all transitions

and actions starting from states {1, 2, . . . , 14} and is 0 when starting in states {0, 15}. The

2-9

action space is uniform over all s ∈ S and equals A(s) = {up, down, right, left}, except

from states there are near the edge of the board whose action space contains all the valid

directions. E.g, A(3) = {down, left}. The transitions are determined deterministically by

the chosen action, i.e

p(s′ |s, a) =

1 , a points from s to s′

0 , else
.

Last, we consider here an undiscounted MDP, i.e γ = 1.

Now, Let us consider an arbitrary policy π0(a|s) = 1
|A(s)| , ∀s ∈ S . We would like to

evaluate π0(a|s) with iterative policy evaluation. First, we initiate v0 = 0 ∈ R16. Now

let us define the operator Tπ.

Rπ =

0

−1

−1
...

−1

0

∈ R16, Pπss′ =

1 0 0 0 0 0 0 0 . . . 0

0.33 0 0.33 0 0 0.33 0 0 . . . 0

0 0.33 0 0.33 0 0 0.33 0 . . . 0

0 0 0.5 0 0 0 0 0.5 . . . 0
...

0 0 0 0 0 0 0 0 . . . 1

∈ R16×16

Now, we can either use the close-form solution for vπ, or either, use iterative policy

evaluation algorithm. By using the closed form solution we obtain vπ0 by Equation (21)

as depicted in Figure 1. On our case, the matrix I − γPπss′ is not invertible (it has two

rows of zeros), hence we used the pseudo-inverse matrix to compute vπ.

2-10

Fig. 1. state-value function for the random policy as obtained by the closed form solution of the Bellman equation.

Now, let us use the iterative policy evaluation algorithm. This means applying Tπ on

v0 = 0 repeatedly, i.e computing the sequence {vk}Tk=0, where T is the final iteration.

In Figure 2 there is a depiction of the first iterations, along with the final iteration. We

used the algorithm with ε = 10−8, and after 258 iteration the algorithm converged. We

can see that the iterative algorithm is much more stable than the closed form solution

and less vulnerable to computational errors.

Now, we can use vπ0 to act greedily and improve the policy to a better one with the

policy improvement algorithm. We can see that acting greedily with respect to either the

state-value function, as we found in the closed form solution, or, by the the state-value

function, as we found by the iterative policy evaluation algorithm, will yield the optimal

policy. This means, that in order to find the optimal policy with the policy iteration

algorithm, we need to perform one iteration (one evaluation and one improvement) to

find the optimal policy. Note that if we acted greedily after the third iteration of iterative

policy evaluation we would have found the optimal policy, even though we did not find

accurately vπ0 . This could be exploited and will be surveyed in next lectures.

2-11

Fig. 2. On the left side, there is a policy evaluation procedure for the uniform policy. The sequence of value functions

converges to the real state-value function vπ0 . On the right side, there is a policy improvement step with respect to

the value function in iteration k, namely vπk .

2-12

APPENDIX

A. closed-form solution of the Bellman equation

Given a finite state space S, namely |S| <∞, let us define the reward vector by

Rπ =

Eπ [Rt+1 | St = s1]

Eπ [Rt+1 | St = s2]
...

Eπ
[
Rt+1 | St = s|S|

]

 , (17)

and the transition matrix by

(Pπss′)i,j =
∑

a∈A(sj)

π(a|sj)p(si|sj, a) , pπ(si|sj) (18)

Pπss′ =

pπ(s1|s1) pπ(s2|s1) . . . pπ(sn|s1)

pπ(s1|s2) pπ(s2|s2) . . . pπ(sn|s2)
...

pπ(s1|sn) pπ(s2|sn) . . . pπ(sn|sn)

 . (19)

Now, we can rewrite (2) in matrix form by

vπ = Rπ + γPπss′vπ, (20)

and the solution to the value-function Bellman expectation equation can be simply be

found by

vπ = (I− γPπss′)−1Rπ. (21)

	Policy Evaluation
	Policy Improvement
	Policy Iteration
	Appendix
	closed-form solution of the Bellman equation

